

Shell Turbo Oil T

HUILE POUR TURBINE DESTINEE TANT AUX TURBINES A VAPEUR QU' AUX TURBINES A GAZ INDUSTRIELLES SOUMISES A DE FAIBLES CONTRAINTES THERMIQUES

- excellente stabilité thermique et à l'oxydation
- faible tendance au moussage
- bonnes capacités de séparation en présence d'eau et bonnes performances de désaération bonne protection contre la corrosion

APPLICATION

Shell Turbo Oil T est conçue pour être utilisée tant comme huile de lubrification de paliers que comme fluide de régulation dans des turbines à vapeur et des turbines à gaz industrielles soumises à de faibles contraintes thermiques, comme on en rencontre dans les installations modernes affichant une puissance spécifique élevée. Shell Turbo Oil T convient également pour les trains d'engrenages tournant à vitesse élevée et dont la lubrification s'effectue par le biais du système de graissage des paliers de la turbine. (systèmes combinés).

CARACTÉRISTIQUES

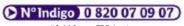
Les installations modernes se caractérisent par une vitesse de circulation et une pression d'alimentation de l'huile de lubrification de plus en plus élevées, mettant à forte épreuve l'huile et augmentant par conséquent le risque de dysfonctionnements. Shell Turbo Oil T a été spécialement conçue pour résister à ces contraintes accrues.

L'excellente stabilité thermique et à l'oxydation préserve les propriétés de l'huile tout au long de sa durée d'utilisation, permettant ainsi de prévenir les arrêts imprévus et coûteux.

Shell Turbo Oil T se caractérise par une faible tendance au moussage. Grâce à sa capacité de désaération rapide , le risque rétention d' air est ramené à un minimum. La rétention d'air et la formation de mousse réduisent en effet la capacité de l'huile à former un film lubrifiant, avec le risque de causer des dommages aux organes. Ce phénomène limite par ailleurs la capacité de l'huile à évacuer la chaleur, engendrant une augmentation de la température au niveau de certains organes.

La contamination de l'huile par l'eau est quasiment inévitable dans les turbines à vapeur. L'humidité peut ainsi entrer en contact avec la surface des roulements et causer l'apparition de corrosion. Grâce à une sélection judicieuse des huiles de base, Shell Turbo Oil T possède de bonnes capacités de séparation en présence d'eau qui, en combinaison avec d'excellentes propriétés anti-corrosion, permettent de réduire considérablement les risques de corrosion.

COMPOSITION


Shell Turbo Oil T est le résultat de l'association d'huiles de base minérales spécialement raffinées et d'un ensemble d'additifs performants.

SPÉCIFICATIONS

Shell Turbo Oil T répond aux spécifications suivantes :

Alstom Power HTGD 90117
Alstom Power NBA P5001
BS 489-1999
DIN 51515-1 classe L-TD
General Electric GEK 28143A*
General Electric GEK 46506E*
ISO 6743-5 classe L-TGA
ISO 6743-5 classe L-TSA
ISO 8068 classe AR
Mitsubishi Heavy Industries E00-87182
Siemens TLV 9013 04
Solar Turbines ES 9-224U
Westinghouse 21 T0591

(uniquement ISO VG 32 en 46)

RESULTATS DES ANALYSES

Shell Turbo Oil T			32	46	68	100
densité à 15 °C,	kg/m³	ISO 3675	865	872	873	876
viscosité à 40 °C,	mm^2/s	ISO 3104	32	46	68	100
viscosité à 100 °C,	mm^2/s	ISO 3104	5,2	7	8,5	11,3
point d'éclair (Cleveland, vo),	°C	ISO 2592	210	215	220	240
point d'écoulement,	°C	ISO 3016	<-12	<-12	-9	-9
indice de neutralisation ,	mg KOH/g	ISO 6618	0,05	0,05	0,05	0,05
stabilité à l'oxydation						
TOST	h	ASTM D 943	8.000	8.000	8.000	8.000
TOST 1000 hr sludge (dépôts)	mg/kg	IP 1 <i>57</i>	<20	<20	<20	<20
stabilité à l'oxydation						
Rotary Bomb Oxidation Test (RBOT)	min	ASTM D 2272	>750	>750	>750	>750
Mod. Rotary Bomb	%		>90	>90	>90	>90
temps de séparation en présence d'eau	S	DIN 51589-1	100	100	140	200
désémulsion à 54 °C,	min	ASTM D 1401	15	15	20	20
désaération à 50 °C,	min	ASTM D 3427	3	3	5	8
pouvoir anti-rouille	-	ASTM D 665 B	pass	pass	pass	pass
corrosion sur cuivre (3 h à 100 °C),	-	ASTM D 130	1A	1A	1A	1A
tendance au moussage						
seq. 1	ml/ml	ASTM D 892	30/0	30/0	30/0	30/0
seq. 2	ml/ml	ASTM D 892	20/0	20/0	20/0	20/0
seg. 3	ml/ml	ASTM D 892	30/0	30/0	30/0	30/0

REMARQUES

Dans le cas où un appoint d'huile neuve est requis, il y a lieu de ne pas ajouter plus de 10% vol/vol à la charge en service. Les ajouts doivent également être effectués de façon progressive ; l'addition pouvant s'établir sur une période d'au moins 15 jours.